Abelian Finite Group of DNA Genomic Sequences
نویسندگان
چکیده
The Z64-algebra of the genetic code and DNA sequences of length N was recently stated. In order to beat the limits of this structure −such as the impossibility of non-coding region analysis in genomes and the impossibility of the insertions and deletions analysis (indel mutations)− we have develop a cycle group structure over the of extended base triplets of DNA X1X2X3, Xi∈{O, A, C, G, U}, where the letter O denote the base omission (deletion) in the codon. The obtained group is isomorphic to the abelian 5-group Z125 of integer module 125. Next, it is defined the abelian finite group S over a set of DNA alignment sequences of length N. The group S could be represented as the direct sum of homocyclic groups: 2-group and 5-group. In particular, DNA subsequences without indel mutation could be considered building block of genes represented by homocyclic 2-groups (described in the previous Z64-algebra). While those DNA subsequences affected by indel mutations are described by means of homocyclic 5-groups. This representation suggests identify genome block structures by way of a regular grammar capable of recognize it. In addition, this novel structure allows us a general analysis of the mutational pathways follow by genes and isofunctional genome regions by means of the automorphism group on S.
منابع مشابه
Non-Abelian Sequenceable Groups Involving ?-Covers
A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملAn explicit formula for the number of fuzzy subgroups of a finite abelian $p$-group\ of rank two
Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian$p$-group, Iranian J. of Fuzzy Systems {bf 7} (2010), 149-153]considered the number of fuzzy subgroups of a finite abelian$p$-group $mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$ of rank two, andgave explicit formulas for the cases when $m$ is any positiveinteger and $n=1,2,3$. Even though their method can be used for thecases when $n=4,5,l...
متن کاملOn $m^{th}$-autocommutator subgroup of finite abelian groups
Let $G$ be a group and $Aut(G)$ be the group of automorphisms of $G$. For any natural number $m$, the $m^{th}$-autocommutator subgroup of $G$ is defined as: $$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G,alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$ In this paper, we obtain the $m^{th}$-autocommutator subgroup of all finite abelian groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005